Open Access Article
Image Processing and Computer Vision. 2025; 1: (1) ; 1-5 ; DOI: 10.12208/j.ipcv.20250001.
Application of AI in cancer diagnosis using brain MRI images
人工智能在利用脑MRI图像进行癌症诊断中的应用
作者:
Yunjie Huang *
得克萨斯州达拉斯市Pinnacle Technical Resources公司 美国
*通讯作者:
Yunjie Huang,单位:得克萨斯州达拉斯市Pinnacle Technical Resources公司 美国;
发布时间: 2025-08-22 总浏览量: 57
PDF 全文下载
引用本文
摘要
随着人工智能(AI)技术的快速发展,其在医学影像领域的应用已成为医学研究和实践的热点,引发了一场医疗技术的革命。尤其是在利用脑磁共振成像(MRI)进行癌症诊断方面,AI技术正发挥着日益重要的作用,为医生提供更精准、更高效的诊断工具。AI利用深度学习和机器学习等先进技术,对脑磁共振图像进行智能分析,能够快速识别异常区域,包括肿瘤、血管畸形等微小病变。这不仅显著提高了诊断的准确性和效率,减轻了医生的工作量,也为患者赢得了宝贵的治疗时间。此外,AI技术优化了工作流程,加快了成像速度,使患者能够更快地获得诊断结果并及时启动治疗措施。本文将深入探讨AI在脑磁共振成像癌症诊断中的实际应用,分析其在提高诊断准确性、优化工作流程等方面的具体成效,并展望未来发展趋势。旨在为医学影像技术的发展提供参考,推动医疗行业智能化进程。
关键词: 人工智能(AI);脑磁共振成像(MRI);癌症诊断;深度学习;诊断准确性;工作流程优化;成像速度加速;图像分辨率增强;未来展望
Abstract
With the rapid development of Artificial Intelligence (AI) technology, its application in the field of medical imaging has become a hot topic in medical research and practice, igniting a revolution in medical technology. Especially in the diagnosis of cancer using brain Magnetic Resonance Imaging (MRI), AI technology is playing an increasingly significant role, providing doctors with more precise and efficient diagnostic tools. Leveraging advanced technologies such as deep learning and machine learning, AI conducts intelligent analysis of brain MRI images, enabling it to swiftly identify abnormal areas, including minute lesions such as tumors and vascular malformations. This capability has not only significantly enhanced diagnostic accuracy and efficiency, reducing the workload of doctors, but also won valuable treatment time for patients. Additionally, AI technology optimizes workflows and accelerates imaging speeds, allowing patients to obtain diagnostic results more quickly and promptly initiate treatment measures. This article will delve into the practical applications of AI in brain MRI for cancer diagnosis, analyzing its specific achievements in improving diagnostic accuracy, optimizing workflows, and other aspects, as well as future trends and prospects. It aims to provide a reference for the development of medical imaging technology, promoting the process of intelligentization in the medical industry.
Key words: Artificial Intelligence (AI); Brain Magnetic Resonance Imaging (MRI); Cancer diagnosis; Deep learning; Diagnostic accuracy; Workflow optimization; Imaging speed acceleration; Image resolution enhancement; Future prospects
参考文献 References
[1] Li J. [Popular science] Artificial intelligence in radiological medical fields: A new experience for patients. 2023. Available from: https://www.btch.edu.cn/ksdh/yjb/fszdk/jkjy_fszdk/c656695d2e9b49fc84a29118ea67c127.htm.
[2] Liu K. Research on artificial intelligence for cancer screening and diagnosis based on neural networks. 2018. Available from: https://kns.cnki.net/kcms2/article/abstract?v=AGqaFAGiW5_yDmXj407zNZMc_mOYAVWmDSMi3kQYVQJ0s5ACws0q1jktE5V9-5ow4OZnGWgMJcKSTuDfqTqrGkn5ZeUUMPCoteQlHiyKhNzhQIffgwxccd5eUwoGsgL1HDdAgog4LzRIL542gpkok8vmW0i1PiwoxocoDPkA0b72hIksfXfN8GDq_aTZqxKe81Klt885geY=&uniplatform=NZKPT&language=CHS.
[3] Fei F. Big biological data and artificial intelligence promote innovation in tumor diagnosis and treatment – An interview with Liu Jie, director of the gastroenterology department at Huashan Hospital affiliated to Fudan University. 2019. Available from: https://kns.cnki.net/kcms2/article/abstract?v=AGqaFAGiW58LOfHdM7HB-uqNaIc0UoEvEvgQaXn5Kc5Q5-8Dai-8lBVc3W_l_jQD6h-WsFr6-diclqLd9-3m-z4xVxLjYYtEBhvQcymUuuwzziub2mWuhsyjTObwwBdJQuqXI4pOWHPsDAdR58xtXz5cm3I6fUkSkBUK79_m3leligIEz0aVy5KB8jHOAVxj3jB34FyLHxo=&uniplatform=NZKPT&language=CHS.
[4] Programmer Wang X. Decoding the AI technology architecture: Comprehensive analysis from model to application - Four core levels. 2024. Available from: https://blog.csdn.net/Z987421/article/details/142746940.
[5] Song Y. Research on magnetic resonance image reconstruction and computer-aided diagnosis based on artificial intelligence. 2019. Available from: https://kns.cnki.net/kcms2/article/abstract?v=AGqaFAGiW59YoHEPHlUABCtiAUoySERofLnqqJ5SWy7u09RSB9nLWi0zccYaI3w_EkCS1AmGr8hzbuODGFyebwYQnHn_Jx14C8kBCwnnRYA1fzoOAP2EGzLrhvEbwHNyN4B6VDdDyB47hRpNRMI64gKWPI2Rg61NVIpwsQPxuo1-Vtjxwjx3RyI2i3_ZehcG3LF2qKCG1uM=&uniplatform=NZKPT&language=CHS.
[6] Wang Y, Yan W, Zhang Y, Lai M, Xu Y. Application of artificial intelligence in pathological images for precision medicine. 2018. Available from: https://kns.cnki.net/kcms2/article/abstract?v=AGqaFAGiW5-Q83UuMIi-HCuw5VgOJsaaVEMqFHBoyBRZrMcPn6627-MRZRU33smCQdKdBQ77zdLinLVJnOYqjJGGH73Wtj7df-WGQYYODOL5c_ooao609O4g8GNo7V4hNSkJF2TNhY3kiyQHkIakl5SfM2t7WCb-97QudbJIpltgInr-CHP91yn6B-JqX5ayN_FbG8bZ8Jc=&uniplatform=NZKPT&language=CHS.
[7] Lu M, Dance A. Artificial intelligence decodes cancer using images and biomics. 2019. Available from:
https://kns.cnki.net/kcms2/article/abstract?v=AGqaFAGiW59fNx_0ai63IycM5c4J4MFnG4mapBcy4fxUgc15duwJfFH2c4bofzbRwEAhlRSP-nm9mMnvSerY8lKV9yh7gl2GTQdHuC2BXEPlXxSFMPlUlgWjfq9XvSgOCG7c863f-zTRkKWdbinalqDLUU6wppgBt9SabfAg1noT9YJvBpw8kJC8Z7q1tEG3cZ1IsuaWdmg=&uniplatform=NZKPT&language=CHS.
[8] The Paper. AI integrated into MRI scanners becomes a savior for early cancer screening. 2023. Available from: https://m.thepaper.cn/newsDetail_forward_23529723.
[9] The Paper. Accurate diagnosis of brain tumors using non-invasive diagnostic tools based on AI technology. 2024. Available from: https://www.thepaper.cn/newsDetail_forward_26646733.
[10] Notebook APP. AI achieves higher efficiency and accuracy in cancer MRI interpretation. 2024. Available from: https://g.pconline.com.cn/x/1769/17693628.html.
引用本文
YunjieHuang, 人工智能在利用脑MRI图像进行癌症诊断中的应用[J]. 图像处理与计算机视觉, 2025; 1: (1) : 1-5.